Evaluation of Social Science Interventions

A/Prof Daryl Jones
Conflict of interest

• ACQSHC - $AU $77k – research grant
• Eastern Health - $ AU 5k – consultancy fees
• Academic bias RRT
Overview

- What are social science / complex interventions
- Problems with evaluation
- Approach to evaluation
- Effectiveness of RRT
- RRT patient
- The team
- Entire RRS
Social Science

- Anthropology
- Archaeology
- Criminology
- Economics
- Education
- Government
- Linguistics
- International relations
- Political science
- Sociology
- Geography
- History
- Law
- Psychology
Complex intervention

- **Bench-to-bedside review: The evaluation of complex interventions in critical care.** Anthony Delaney et al
 Critical care

- **Developing and evaluating complex interventions: new guidance.** Peter Craig et al for MRC UK
Complex interventions

• Developed from number components
• Act both independently and inter-dependently.

• Examples:
 » MET / RRT
 » EGDT for severe sepsis

• Function of intervention remains constant
 – E.g. Reduce hypoperfusion in patients with severe sepsis
 – E.g. RRT = review and manage deteriorating ward patients

• Contrast with RCT
 – inclusion/exclusion criteria
 – defined intervention
Is the RRT a complex intervention?

1. DeVita et al. CCM
Act independently or inter-dependently

• The patient
 – Age / chronic organ failure / functional status = reserve
 – Disease state admitted with

• Calling criteria / activation
 – Failed and delayed calling
 – Marked variation calling criteria between hospitals
 – Calling criteria usually based on physiological derangement
 – Many different conditions can cause
 » Hypotension – cardiogenic shock from AMI versus hypovolemia
 » Tachycardia – dehydration versus large pulmonary embolism

<table>
<thead>
<tr>
<th>Cause of the MET call</th>
<th>Number of calls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypoxia / Increased respiratory rate</td>
<td>218</td>
</tr>
<tr>
<td>Pulmonary oedema / fluid overload</td>
<td>218</td>
</tr>
<tr>
<td>Pneumonia / aspiration</td>
<td>66</td>
</tr>
<tr>
<td>Exacerbation chronic obstructive airways disease</td>
<td>52</td>
</tr>
<tr>
<td>Sepsis</td>
<td>52</td>
</tr>
<tr>
<td>Pulmonary embolism</td>
<td>16</td>
</tr>
<tr>
<td>Arrhythmia</td>
<td>11</td>
</tr>
<tr>
<td>Sputum plug, narcotized, acidemia, pleural effusion, tracheostomy blocked, atelectasis, intracranial event</td>
<td>11</td>
</tr>
<tr>
<td>No cause documented</td>
<td>12</td>
</tr>
<tr>
<td>Hypotension</td>
<td>112</td>
</tr>
<tr>
<td>Sepsis</td>
<td>112</td>
</tr>
<tr>
<td>Bleeding / hypovolemia</td>
<td>30</td>
</tr>
<tr>
<td>Acute pulmonary oedema / myocardial ischemia</td>
<td>30</td>
</tr>
<tr>
<td>Arrhythmia</td>
<td>28</td>
</tr>
<tr>
<td>Cardiac arrest</td>
<td>15</td>
</tr>
<tr>
<td>Epidural related, Pulmonary embolism, anaphylaxis, vasovagal, Narcosis</td>
<td>10</td>
</tr>
<tr>
<td>No cause documented</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>112</td>
</tr>
</tbody>
</table>
• Team
 – Marked variation in team composition MET / RRT between hospitals
 – Different level of seniority / experience
 – Rarely train together as repeated team
 – Variably funded between hospitals

• Critical care beds (number and type)

• Presence / experience of parent team

• System factors = time of day / day of week

Patient

Rapid Response Team

Home team (medical)

Patients family

Ward nurses

- Allied health
- Visiting teams
• Act independently and inter-dependently

• **Practice variation**
 – Within hospital
 – Between hospitals

• Practice variation that is positive = desirable

• Practice variation that worsens outcome = Undesirable or unwanted practice variation
Two patients: SBP 85mmHg HR 140 bpm

<table>
<thead>
<tr>
<th>Patient 1</th>
<th>Patient 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>17 yo fit female with moderate N+V</td>
<td>85 yo male with IHD, CRF, DM</td>
</tr>
<tr>
<td>No delay RRT call</td>
<td>Day 3 post laparotomy bowel Cancer</td>
</tr>
<tr>
<td>Call 930 am Wed</td>
<td>Cellulitic wound</td>
</tr>
<tr>
<td>ICU consultant team leader</td>
<td>Surgical admission</td>
</tr>
<tr>
<td>Admitted under Internal Med</td>
<td>Boarder on thoracic ward</td>
</tr>
<tr>
<td>On medical ward</td>
<td>RRT 3am Sat, 6hr delayed</td>
</tr>
<tr>
<td>ICU bed free if needed</td>
<td>No dedicated RRT registrar</td>
</tr>
<tr>
<td>ICU full</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- ICU consultant team leader
- Admitted under Internal Med
- On medical ward
- ICU bed free if needed

Additional Notes:
- Boarder on thoracic ward
- Surgical admission
- RRT 3am Sat, 6hr delayed
- No dedicated RRT registrar
- ICU full
Approach to evaluation

- Most studies
 - Effect of a RRT on outcomes of all hospitalised patients
 - Unplanned ICU admissions
 - Unexpected deaths
 - Cardiac arrests

Hospitalised patients (before) RRT Hospitalised patients (after)
• Majority have been before and after designs
 – Collect baseline period of data = historical control
 – Education / run-in / go-live with RRT
 – Period of post-intervention data collection

• Multiple before – after studies
 1-3
 – Australia = 10
 – USA = 7
 – UK = 3
 – Canada = 1

• Heterogeneity – outcomes, design, quality, RRT activations

• Problems with before and after studies
 – Patient populations in the before and after period may be different
 – If there is improvement then may be due to
 » Natural improvement with time
 » Other interventions
 » Effects of education / awareness alone
 » Hawthorne effect = staff know they are being watched
 » Regression to mean (statistics) = repeat sampling / chance
 – Patients are not randomised - ? Bias in selection of those reviewed

1. Moran and Soloman CCR 2005
• Can control for baseline variables
 – Age
 – Gender
 – Race
 – Admission diagnosis / Case-mix
 – Chronic co-morbidity – e.g. Carlson index
 – Season

• Time-series analysis / time-trends

• Generalised estimating equations models
• Randomized controlled trial
 – Individual patient
 » Staff may introduce intervention to controls = contamination
 – Randomize at the level of hospital ward

• Cluster RCT
 – Randomize at level of entire hospital
 – E.g. MERIT trial

1. Priestly et al 2004
2. Hillman et al Lancet 2005
• Problems with cluster RCT
 – Estimation of baseline incidence of event (power)
 – Variation between hospitals > effect of therapy
 – Like hospitals ≠ like (patients, other QI interventions, ICU beds, staff level, number admissions etc etc)
 – Variable implementation of intervention
 » Team availability & resourcing / composition / experience
 » Variable calling criteria
 » Use of team by ward staff (delayed and failed activation) - ITT
 – Issues similar to before – after studies
 – Expensive / complex and difficult to run = short follow-up
 – Use of intervention in control hospitals = contamination
Evaluating Mature RRSs

- Rapid Response Team
- Home team (medical)
- Ward nurses
- Patients family
- Patient
- • Allied health
 • Visiting teams
Summary

• Evaluation of effect of RRT on outcome of all hospitalised patients difficult

• What about evaluation of a mature/established
 – What is degree of practice variation
 – How can this be minimised
What about the team?

• Within team (intra-team) – Sam Radford
 – Defining roles = absolute / flexibility
 – Interactions
 – Crisis resource management / prioritisation
 » Assessed during simulation training
 – What tasks do they complete
 – What are the interventions
 » Effects of standardising / protocolising approach to intervention
- Inter-team interactions (assessing quality hand-off)
 - Getting handover from ward staff
 - Communicating with home team / nurses / patient after call
What about the patient?

- Epidemiology of the RRT patient
 - Who are they / how do they differ from non-RRT patient
 - Cause of RRT calls
 » physiological trigger / worried
 » Clinical cause of the deterioration = sepsis / AMI / APO / AF
 - Target for further interventions
 - Issues surrounding end-of-life care
 - What treatment is given
 - Disposition after review
 - Outcome after review
Mature RRScontin...

• Afferent
 – Quality vital sign assessment
 – Delayed calling
 – Adverse events that had calling criteria
 – Number of calls / 1000 admissions = RRT dose (Good / bad)

• Efferent
 – Adverse events shortly after review
• Whole system
 – RRT calls in first 24 hr admission = suboptimal triage
 – Mortality all hospital admissions / RRT patients
 – End of life care issues in the RRT
 – Repeat RRT calls
 – Admission to critical care after RRT review
 – Unplanned ICU admissions / cardiac arrests / unexpected deaths
 – Staff retention rates
 – Ward staff attitudes to RRT
Evaluating novel interventions

• Massive degree of practice variation between hospitals
 – Thresholds for calling criteria
 – Resourcing of team
 – Composition and availability of team

• Large variability in in-hospital mortality
 – Hospitalised patients overall
 – Patients subject to MET review

2. ANZICS-CORE MET dose investigators
• If investigating interventions MET-based in multiple site
 – Standardise calling criteria
 – Standardisation of team composition
 – Standardisation of types of patients reviewed
 » AF
 » Sepsis
 » Cardiogenic pulmonary oedema
 – Protocolise intervention
Conclusion

• RRS = example of complex intervention
 – Multiple components
 – Act independently and inter-dependently

• Difficult to evaluation effect on all patients

• In a mature RRS
 – Individual components
 – Aspects of team
 – Communication
 – Epidemiology of the RRT patient
Questions