How to ventilate a patient without

Dietrich Henzler MD PhD, FRCPC
Division of Critical Care

Department of Anesthesia
Disclosure
Conflicts of Interest 2001–2011

Research Grants & Payments (cost reimbursements, speaker fees)

- Draeger Medical
- Air Liquide
- Hamilton Medical
- Hospira
- Fresenius Kabi
Definition of ALI

• AECC Criteria
 • acute onset
 • bilateral (neutrophil) infiltrate on CXR
 • oxygenation impairment (P/F ratio < 300 mmHg)
 • not caused by left heart failure

Definition of ALI mild ARDS

- **AECC Criteria**
 - acute onset
 - bilateral (neutrophil) infiltrate on CXR / CT
 - oxygenation impairment (P/F ratio < 300 mmHg)
 - not caused by left heart failure
 - Medical condition predisposing to ARDS

Common Etiology of ALI/
Common Etiology of ALI/

Direct Injury
• pneumonia
• gastric aspiration
• near drowning
• fat/amnion embolism
• pulmonary contusion
• alveolar hemorrhage
• smoke/gas inhalation
• reperfusion injury
Common Etiology of ALI/

Direct Injury
- pneumonia
- gastric aspiration
- near drowning
- fat/amnion embolism
- pulmonary contusion
- alveolar hemorrhage
- smoke/gas inhalation
- reperfusion injury

Indirect Injury
- sepsis
- transfusion
- shock
- pancreatitis
- brain injury
- trauma
- cancer
Mister X.
Mister X.

- 74y male with perforated viscus, 4 quadrant peritonitis
Mister X.

- 74y male with perforated viscus, 4 quadrant peritonitis
- Colon resection, on-table lavage, primary closure
Mister X.

- 74y male with perforated viscus, 4 quadrant peritonitis
- Colon resection, on-table lavage, primary closure
- Hemodynamically instability despite aggressive volume resuscitation
Mister X.

- 74y male with perforated viscus, 4 quadrant peritonitis
- Colon resection, on-table lavage, primary closure
- Hemodynamically instability despite aggressive volume resuscitation
- Intubated, PEEP 5 cmH$_2$O
Mister X.

- 74y male with perforated viscus, 4 quadrant peritonitis
- Colon resection, on-table lavage, primary closure
- Hemodynamically instability despite aggressive volume resuscitation
- Intubated, PEEP 5 cmH$_2$O
- FiO2 50%, PaO2 186 mmHg
How would you ventilate?
How would **you** ventilate?

Does not have ALI
How would you ventilate?

Does not have ALI
Does have SIRS / sepsis / septic shock
How would you ventilate?

Does not have ALI
Does have SIRS / sepsis / septic shock
How would you ventilate?

Does not have ALI
Does have SIRS / sepsis / septic shock

• Tidal volume?
How would you ventilate?

Does not have ALI
Does have SIRS / sepsis / septic shock

• Tidal volume?
• PEEP?
How would you ventilate?

Does not have ALI
Does have SIRS / sepsis / septic shock

• Tidal volume?
• PEEP?
• Controlled vs. assisted ventilation
How would you ventilate?

Does not have ALI
Does have SIRS / sepsis / septic shock

• Tidal volume? Low VT (6 ml/kg IBW)
 “minimum PEEP”
• PEEP?
• Controlled vs. assisted ventilation

Surviving Sepsis Campaign Guidelines
Crit Care Med / Intensive Care Med 2004
Mechanism of biotrauma

Excessive tidal volume
or excessive PEEP
Mechanism of biotrauma

Excessive tidal volume or excessive PEEP

Consequences:

• Overstretching
• Alveolar/capillary damage
• Inflammation => Biotrauma

TNF-α
IL-6
IL-8
Septic ALI caused by

Herrera MT et al. ICM 2003; 29:1345

PEEP modulates local and systemic inflammatory responses in a sepsis-induced lung injury model
Septic ALI caused by

Design:

20 rats each group, Sepsis by coecum ligation & puncture

Herrera MT et al. ICM 2003; 29:1345

PEEP modulates local and systemic inflammatory responses in a sepsis-induced lung injury model
Design:

20 rats each group, Sepsis by coecum ligation & puncture
2 control groups, ventilation for 3h:

shv: sepsis + high tidal volume, zero PEEP

Herrera MT et al. ICM 2003; 29:1345
PEEP modulates local and systemic inflammatory responses in a sepsis-induced lung injury model
TNF-α in Plasma [pg/ml]

Herrera MT et al. ICM 2003; 29:1345
20 ml/kg
6 ml/kg
6 ml/kg + PEEP

TNF-α in Plasma [pg/ml]

Herrera MT et al. ICM 2003; 29:1345
Lung injury scoring

Herrera MT et al. ICM 2003; 29:1345
Lung injury scoring

Herrera MT et al. ICM 2003; 29:1345
Intraoperative Ventilator Settings and activation of inflammatory
Intraoperative Ventilator Settings and activation of inflammatory

• Prospective randomized study
Intraoperative Ventilator Settings and activation of inflammatory

- Prospective randomized study
- 39 patients
 - Extra-thoracic surgery

Wrigge et al Anesthesiology, 2000
Intraoperative Ventilator Settings and activation of inflammatory

- Prospective randomized study
- 39 patients
 - Extra-thoracic surgery
- Monitored for pro-inflammatory cytokines

Wrigge et al. Anesthesiology, 2000
Intraoperative Ventilator Settings and activation of inflammatory

• Prospective randomized study
• 39 patients
 • Extra-thoracic surgery
• Monitored for pro-inflammatory cytokines

Wrigge et al Anesthesiology, 2000
Intraoperative Ventilator Settings and activation of inflammatory

- Prospective randomized study
- 39 patients
 - Extra-thoracic surgery
- Monitored for pro-inflammatory cytokines
- I: Tidal volume 15 ml/kg, ZEEP

Wrigge et al. Anesthesiology, 2000
Prospective randomized study

39 patients
 - Extra-thoracic surgery

Monitored for pro-inflammatory cytokines

I: Tidal volume 15 ml/kg, ZEEP
II: Tidal volume 6 ml/kg, ZEEP

Wrigge et al. Anesthesiology, 2000
Intraoperative Ventilator Settings and activation of inflammatory

- Prospective randomized study
- 39 patients
 - Extra-thoracic surgery
- Monitored for pro-inflammatory cytokines

- I: Tidal volume 15 ml/kg, ZEEP
- II: Tidal volume 6 ml/kg, ZEEP
- III: Tidal volume 6 ml/kg, PEEP = 10 cmH2O

Wrigge et al Anesthesiology, 2000
Results: Cytokine after 1h ventilation

A

High V_T / ZEEP

Low V_T / ZEEP

Low V_T / PEEP
Should patients without ALI/
Age, Duration of Mechanical Ventilation, and Outcomes of Patients Who Are Critically Ill
Age, Duration of Mechanical Ventilation, and Outcomes of Patients Who Are Critically Ill

- **Design:** Retrospective chart review of patients admitted to hospital ICU between 2003-2008.

Feng et al. Chest 2009; 136; 759-764
Age, Duration of Mechanical Ventilation, and Outcomes of Patients Who Are Critically Ill

- **Design:** Retrospective chart review of patients admitted to hospital ICU between 2003-2008.
- **Study Population:** 4,238 adult (>18) patients who were admitted to ICU and received invasive mechanical ventilation.
Age, Duration of Mechanical Ventilation, and Outcomes of Patients Who Are Critically Ill

• **Design:** Retrospective chart review of patients admitted to hospital ICU between 2003-2008.

• **Study Population:** 4,238 adult (>18) patients who were admitted to ICU and received invasive mechanical ventilation.

• **Hypothesis:** Age and duration of mechanical ventilation will provide prognostic information as the trial of therapy proceeds.

Feng et al. Chest 2009; 136; 759-764
30% of patients ventilated >24h do not survive!

Feng et al. Chest 2009; 136; 759-764
Intraoperative Ventilator Settings and Acute Lung Injury after Elective Surgery: a Nested Case–
Intraoperative Ventilator Settings and Acute Lung Injury after Elective Surgery: a Nested Case–Prospective, observational study
Intraoperative Ventilator Settings and Acute Lung Injury after Elective Surgery: a Nested Case–Prospective, observational study

- Prospective, observational study
- 4420 patients from 2005-06
 - Elective surgery
 - Post-OP pulmonary complications
 - Developed ALI within PO day 5 (3.4%)
Intraoperative Ventilator Settings and Acute Lung Injury after Elective Surgery: a Nested Case–

- Prospective, observational study
- 4420 patients from 2005-06
 - Elective surgery
 - Post-OP pulmonary complications
 - Developed ALI within PO day 5 (3.4%)
- Each matched with 2 controls for age, gender, ASA, surgery

Gajic et al, Thorax 2009
Intraoperative Ventilator Settings and Acute Lung Injury after Elective Surgery: a Nested Case–

- Prospective, observational study
- 4420 patients from 2005-06
 - Elective surgery
 - Post-OP pulmonary complications
 - Developed ALI within PO day 5 (3.4%)
- Each matched with 2 controls for age, gender, ASA, surgery
- 60-day (1 year) survival
 - ALI: 72% Non-ALI: 99% p<0.001

Gajic et al, Thorax 2009
Ventilatory risk factors for

<table>
<thead>
<tr>
<th>Variable</th>
<th>Controls (N=166) Mean (SD)</th>
<th>Cases (N=83) Mean (SD)</th>
<th>Adjusted Odds Ratio (95%CI)*</th>
<th>P Valu</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tidal volume/ Kg PBW</td>
<td>8.7 (1.7)</td>
<td>8.9 (1.6)</td>
<td>1.03 (0.84-1.26)</td>
<td>0.80</td>
</tr>
<tr>
<td>PEEP, cmH$_2$O</td>
<td>1.7 (2.2)</td>
<td>1.4 (2.5)</td>
<td>0.89 (0.77-1.04)</td>
<td>0.18</td>
</tr>
<tr>
<td>Peak airway pressure, cmH$_2$O</td>
<td>19 (4.8)</td>
<td>21 (5.9)</td>
<td>1.07 (1.02-1.15)</td>
<td>0.04</td>
</tr>
<tr>
<td>Respiratory rate, cycles/min</td>
<td>11 (1.4)</td>
<td>11 (1.3)</td>
<td>1.01 (0.77-1.32)</td>
<td>0.94</td>
</tr>
<tr>
<td>FIO$_2$, %</td>
<td>73 (18)</td>
<td>80 (17)</td>
<td>1.00 (0.98-1.03)</td>
<td>0.70</td>
</tr>
</tbody>
</table>

Gajic et al, Thorax 2009
Ventilatory risk factors for

<table>
<thead>
<tr>
<th>Variable</th>
<th>Controls (N=166) Mean (SD)</th>
<th>Cases (N=83) Mean (SD)</th>
<th>Adjusted Odds Ratio (95%CI)*</th>
<th>P Valu</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tidal volume/ Kg PBW</td>
<td>8.7 (1.7)</td>
<td>8.9 (1.6)</td>
<td>1.03 (0.84-1.26)</td>
<td>0.80</td>
</tr>
<tr>
<td>PEEP, cmH$_2$O</td>
<td>1.7 (2.2)</td>
<td>1.4 (2.5)</td>
<td>0.89 (0.77-1.04)</td>
<td>0.18</td>
</tr>
<tr>
<td>Peak airway pressure, cmH$_2$O</td>
<td>19 (4.8)</td>
<td>21 (5.9)</td>
<td>1.07 (1.02-1.15)</td>
<td>0.04</td>
</tr>
<tr>
<td>Respiratory rate, cycles/min</td>
<td>11 (1.4)</td>
<td>11 (1.3)</td>
<td>1.01 (0.77-1.32)</td>
<td>0.94</td>
</tr>
<tr>
<td>FIO$_2$, %</td>
<td>73 (18)</td>
<td>80 (17)</td>
<td>1.00 (0.98-1.03)</td>
<td>0.70</td>
</tr>
</tbody>
</table>

Gajic et al, Thorax 2009
Ventilatory risk factors for

<table>
<thead>
<tr>
<th>Variable</th>
<th>Controls (N=166) Mean (SD)</th>
<th>Cases (N=83) Mean (SD)</th>
<th>Adjusted Odds Ratio (95%CI)*</th>
<th>P Valu</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tidal volume/ Kg PBW</td>
<td>8.7 (1.7)</td>
<td>8.9 (1.6)</td>
<td>1.03 (0.84-1.26)</td>
<td>0.80</td>
</tr>
<tr>
<td>PEEP, cmH₂O</td>
<td>1.7 (2.2)</td>
<td>1.4 (2.5)</td>
<td>0.89 (0.77-1.04)</td>
<td>0.18</td>
</tr>
<tr>
<td>Peak airway pressure, cmH₂O</td>
<td>19 (4.8)</td>
<td>21 (5.9)</td>
<td>1.07 (1.02-1.15)</td>
<td>0.04</td>
</tr>
<tr>
<td>Respiratory rate, cycles/min</td>
<td>11 (1.4)</td>
<td>11 (1.3)</td>
<td>1.01 (0.77-1.32)</td>
<td>0.94</td>
</tr>
<tr>
<td>FIO₂, %</td>
<td>73 (18)</td>
<td>80 (17)</td>
<td>1.00 (0.98-1.03)</td>
<td>0.70</td>
</tr>
</tbody>
</table>
Ventilatory risk factors for

<table>
<thead>
<tr>
<th>Variable</th>
<th>Controls (N=166) Mean (SD)</th>
<th>Cases (N=83) Mean (SD)</th>
<th>Adjusted Odds Ratio (95%CI)*</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tidal volume/ Kg PBW</td>
<td>8.7 (1.7)</td>
<td>8.9 (1.6)</td>
<td>1.03 (0.84-1.26)</td>
<td>0.80</td>
</tr>
<tr>
<td>PEEP, cmH₂O</td>
<td>1.7 (2.2)</td>
<td>1.4 (2.5)</td>
<td>0.89 (0.77-1.04)</td>
<td>0.18</td>
</tr>
<tr>
<td>Peak airway pressure, cmH₂O</td>
<td>19 (4.8)</td>
<td>21 (5.9)</td>
<td>1.07 (1.02-1.15)</td>
<td>0.04</td>
</tr>
<tr>
<td>Respiratory rate, cycles/min</td>
<td>11 (1.4)</td>
<td>11 (1.3)</td>
<td>1.01 (0.77-1.32)</td>
<td>0.94</td>
</tr>
<tr>
<td>FIO₂, %</td>
<td>73 (18)</td>
<td>80 (17)</td>
<td>1.00 (0.98-1.03)</td>
<td>0.70</td>
</tr>
</tbody>
</table>

Gajic et al, Thorax 2009
Impact of intraoperative lung protective interventions in patients undergoing lung

- Observational cohort study (10 y)
- 5 y of LPV protocol 2003-2008 (n=558)
- comparison with historic cohort 1998-2003 (n=533)

Licker et al, Critical Care 2009, 13:R41
Impact of intraoperative lung protective interventions in patients undergoing lung

VT 8 ml/kg PBW
PPLAT < 35 cmH2O
PEEP 4–10 cmH2O
vital capacity maneuvers
(35 cmH2O for 10 sec)
Protective ventilation for lung surgery

<table>
<thead>
<tr>
<th></th>
<th>CV</th>
<th>LPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tidal Volume, ml/kg PBW</td>
<td>7.1 (1.2)</td>
<td>5.3 (1.1)*</td>
</tr>
<tr>
<td>Inspiratory Plateau Pressure, cmH2O</td>
<td>20 (7)</td>
<td>15 (6)*</td>
</tr>
<tr>
<td>Positive End-Expiratory Pressure, cmH2O</td>
<td>3.3 (2.1)</td>
<td>6.2 (2.4)*</td>
</tr>
<tr>
<td>Dynamic Compliance, ml/cmH2O</td>
<td>32.2 (7.5)</td>
<td>44.6 (6.9)*</td>
</tr>
<tr>
<td>Inspiratory Oxygen fraction, %</td>
<td>64 (9)</td>
<td>67 (8)</td>
</tr>
<tr>
<td>Respiratory Rate, cycle/min</td>
<td>13 (2)</td>
<td>15 (2)*</td>
</tr>
</tbody>
</table>

Licker et al, Critical Care 2009, 13:R41
Protective ventilation for lung surgery

<table>
<thead>
<tr>
<th></th>
<th>CV</th>
<th>LPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tidal Volume, ml/kg PBW</td>
<td>7.1 (1.2)</td>
<td>5.3 (1.1)*</td>
</tr>
<tr>
<td>Inspiratory Plateau Pressure, cmH2O</td>
<td>20 (7)</td>
<td>15 (6)*</td>
</tr>
<tr>
<td>Positive End-Expiratory Pressure, cmH2O</td>
<td>3.3 (2.1)</td>
<td>6.2 (2.4)*</td>
</tr>
<tr>
<td>Dynamic Compliance, ml/cmH2O</td>
<td>32.2 (7.5)</td>
<td>44.6 (6.9)*</td>
</tr>
<tr>
<td>Inspiratory Oxygen fraction, %</td>
<td>64 (9)</td>
<td>67 (8)</td>
</tr>
<tr>
<td>Respiratory Rate, cycle/min</td>
<td>13 (2)</td>
<td>15 (2)*</td>
</tr>
</tbody>
</table>

Licker et al, Critical Care 2009, 13:R41
Protective ventilation for lung surgery

<table>
<thead>
<tr>
<th></th>
<th>CV</th>
<th>LPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tidal Volume, ml/kg PBW</td>
<td>7.1 (1.2)</td>
<td>5.3 (1.1)*</td>
</tr>
<tr>
<td>Inspiratory Plateau Pressure, cmH2O</td>
<td>20 (7)</td>
<td>15 (6)*</td>
</tr>
<tr>
<td>Positive End-Expiratory Pressure, cmH2O</td>
<td>3.3 (2.1)</td>
<td>6.2 (2.4)*</td>
</tr>
<tr>
<td>Dynamic Compliance, ml/cmH2O</td>
<td>32.2 (7.5)</td>
<td>44.6 (6.9)*</td>
</tr>
<tr>
<td>Inspiratory Oxygen fraction, %</td>
<td>64 (9)</td>
<td>67 (8)</td>
</tr>
<tr>
<td>Respiratory Rate, cycle/min</td>
<td>13 (2)</td>
<td>15 (2)*</td>
</tr>
</tbody>
</table>

Licker et al, Critical Care 2009, 13:R41
Protective ventilation for lung surgery

<table>
<thead>
<tr>
<th></th>
<th>CV</th>
<th>LPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tidal Volume, ml/kg PBW</td>
<td>7.1 (1.2)</td>
<td>5.3 (1.1)*</td>
</tr>
<tr>
<td>Inspiratory Plateau Pressure, cmH2O</td>
<td>20 (7)</td>
<td>15 (6)*</td>
</tr>
<tr>
<td>Positive End-Expiratory Pressure, cmH2O</td>
<td>3.3 (2.1)</td>
<td>6.2 (2.4)*</td>
</tr>
<tr>
<td>Dynamic Compliance, ml/cmH2O</td>
<td>32.2 (7.5)</td>
<td>44.6 (6.9)*</td>
</tr>
<tr>
<td>Inspiratory Oxygen fraction, %</td>
<td>64 (9)</td>
<td>67 (8)</td>
</tr>
<tr>
<td>Respiratory Rate, cycle/min</td>
<td>13 (2)</td>
<td>15 (2)*</td>
</tr>
</tbody>
</table>

Licker et al, Critical Care 2009, 13:R41
Protective ventilation for lung surgery

Licker et al, Critical Care 2009, 13:R41
Protective ventilation for lung surgery

<table>
<thead>
<tr>
<th>Condition</th>
<th>Conv.</th>
<th>PLV</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atelectasis</td>
<td>8.8</td>
<td>5.0</td>
<td>0.018</td>
</tr>
<tr>
<td>ALI</td>
<td>3.8</td>
<td>0.9</td>
<td>0.032</td>
</tr>
<tr>
<td>ICU Admit</td>
<td>9.4</td>
<td>2.5</td>
<td><0.001</td>
</tr>
<tr>
<td>Cardio Compl.</td>
<td>12.0</td>
<td>11.3</td>
<td>0.723</td>
</tr>
<tr>
<td>Mortality</td>
<td>2.8</td>
<td>2.3</td>
<td>0.753</td>
</tr>
</tbody>
</table>

Licker et al, Critical Care 2009, 13:R41
Does a Protective Ventilation Strategy Reduce the Risk of Pulmonary Complications After Lung
Does a Protective Ventilation Strategy Reduce the Risk of Pulmonary Complications After Lung

- Prospective trial 122 pts. Elective lobectomy

Yang M et al CHEST 2011;139:530-537
Does a Protective Ventilation Strategy Reduce the Risk of Pulmonary Complications After Lung

- Prospective trial 122 pts. Elective lobectomy
- General anesthesia + TEA

Yang M et al CHEST 2011;139:530-537
Does a Protective Ventilation Strategy Reduce the Risk of Pulmonary Complications After Lung Lobectomy?

- Prospective trial 122 pts. Elective lobectomy
- General anesthesia + TEA
- During one-lung ventilation
 - CV: 10 ml/kg IBW, ZEEP
 - PV: 5 ml/kg PBW, PEEP 5 cmH2O

Yang M et al CHEST 2011;139:530-537
Does a Protective Ventilation Strategy Reduce the Risk of Pulmonary Complications After Lung

- Prospective trial 122 pts. Elective lobectomy
- General anesthesia + TEA
- During one-lung ventilation
 - CV: 10 ml/kg IBW, ZEEP
 - PV: 5 ml/kg PBW, PEEP 5 cmH2O
- No randomization

Yang M et al CHEST 2011;139:530-537
Does a Protective Ventilation Strategy Reduce the Risk of Pulmonary Complications After Lung

- Prospective trial 122 pts. Elective lobectomy
- General anesthesia + TEA
- During one-lung ventilation
 - CV: 10 ml/kg IBW, ZEEP
 - PV: 5 ml/kg PBW, PEEP 5 cmH2O
- No randomization
- No blinding

Yang M et al CHEST 2011;139:530-537
Conventional vs. protective

Yang M et al CHEST 2011;139:530-537
Ventilation in ICU
Ventilator-associated lung injury in patients without acute lung injury at the onset of mechanical ventilation
Ventilator–associated lung injury in patients without acute lung injury at the onset of mechanical ventilation

- Retrospective, single center cohort study
Ventilator–associated lung injury in patients without acute lung injury at the onset of mechanical ventilation

- Retrospective, single center cohort study
- All patients admitted to ICU in 2001 and ventilated >48h (447)
 - No ALI present at onset of ventilation (332)
 - No exclusion criteria (long-term vent, neuromuscul. Disease, no consent)
Ventilator–associated lung injury in patients without acute lung injury at the onset of mechanical ventilation

- Retrospective, single center cohort study
- All patients admitted to ICU in 2001 and ventilated >48h (447)
 - No ALI present at onset of ventilation (332)
 - No exclusion criteria (long-term vent, neuromuscul. Disease, no consent)
- Analysis for ventilation parameters & risk factors

Gajic et al, Crit Care Med, 2004
Results: Influence of tidal

High VT was associated with

- female gender
- short height
- routine post-op
- Lesser severity of disease
- better gas exchange parameters

Gajic et al, Crit Care Med, 2004
High VT was associated with

- female gender
- short height
- routine post-op
- Lesser severity of disease
- better gas exchange parameters

Gajic et al, Crit Care Med, 2004
Results: Risk factors

<table>
<thead>
<tr>
<th></th>
<th>N=80</th>
<th>Adjusted OR</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>High VT, per ml/kg</td>
<td>1.29 (1.12–1.51)</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Low pH (< 7.35)</td>
<td>2.0 (1.1–3.79)</td>
<td>0.032</td>
<td></td>
</tr>
<tr>
<td>Blood transfusion</td>
<td>2.97 (1.56–5.9)</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>Restrictive lung disease</td>
<td>3.6 (1.0–12.6)</td>
<td>0.044</td>
<td></td>
</tr>
</tbody>
</table>

24% of patients developed ALI, mostly within 3 days of admission

Gajic et al, Crit Care Med, 2004
Low V_T vs. Traditional V_T

Determann J et al. Ventilation with lower tidal volumes as compared with conventional tidal volumes for patients without ALI: a preventive randomized controlled trial. Crit Care 2010; 14:R1
Low V_T vs. Traditional V_T

- Prospective RCT in 150 mechanically ventilated pts. admitted to ICU

Determann J et al. Ventilation with lower tidal volumes as compared with conventional tidal volumes for patients without ALI: a preventive randomized controlled trial. Crit Care 2010; 14:R1
Low V_T vs. Traditional V_T

- Prospective RCT in 150 mechanically ventilated pts. admitted to ICU
- 6 vs. 10 ml/kg predicted body weight

Determann J et al. Ventilation with lower tidal volumes as compared with conventional tidal volumes for patients without ALI: a preventive randomized controlled trial. Crit Care 2010; 14:R1
Low V_T vs. Traditional V_T

- Prospective RCT in 150 mechanically ventilated pts. admitted to ICU
- 6 vs. 10 ml/kg predicted body weight
- Primary objective:
 - Cytokine levels BALF

Determann J et al. Ventilation with lower tidal volumes as compared with conventional tidal volumes for patients without ALI: a preventive randomized controlled trial. Crit Care 2010; 14:R1
Low V_T vs. Traditional V_T

- Prospective RCT in 150 mechanically ventilated pts. admitted to ICU
- 6 vs. 10 ml/kg predicted body weight
- Primary objective:
 - Cytokine levels BALF
- Secondary objective:
 - Development of ALI

Determann J et al. Ventilation with lower tidal volumes as compared with conventional tidal volumes for patients without ALI: a preventive randomized controlled trial. Crit Care 2010; 14:R1
All Patients
All Patients

only Patients With ALI
6 vs. 10 ml/kg PBW in Pts.

Determann J et al. Ventilation with lower tidal volumes as compared with conventional tidal volumes for patients without ALI: a preventive randomized controlled trial. Crit Care 2010; 14:R1
6 vs. 10 ml/kg PBW in Pts.

ALL developed in 13.5% in conventional VT versus 2.6% in low VT group

Determann J et al. Ventilation with lower tidal volumes as compared with conventional tidal volumes for patients without ALI: a preventive randomized controlled trial. Crit Care 2010; 14:R1
6 vs. 10 ml/kg PBW in Pts.

ALI developed in 13.5% in conventional VT versus 2.6% in low VT group

Ventilation group and higher PEEP independent predictors of ALI in multivariate model

Determann J et al. Ventilation with lower tidal volumes as compared with conventional tidal volumes for patients without ALI: a preventive randomized controlled trial. Crit Care 2010; 14:R1
6 vs. 10 ml/kg PBW in Pts.

ALI developed in **13.5%** in conventional VT versus **2.6%** in low VT group

Ventilation group and higher PEEP independent predictors of ALI in multivariate model

Weaknesses:
- Stopped after interim analysis (underpowered)
- No difference for primary objectives

Determann J et al. Ventilation with lower tidal volumes as compared with conventional tidal volumes for patients without ALI: a preventive randomized controlled trial. Crit Care 2010; 14:R1
LPV prevents development of
Experimental Sepsis in rats

- LPS 15 mg/kg IV, fluid resuscitation
- Ventilation for 5h
 - 8 ml/kg
 - PEEP 5 cmH2O
 - FiO₂ 0.4
- Septic lung injury

PaO$_2$–FiO$_2$ ratio / Lung

PaO$_2$–FiO$_2$ ratio / Lung

Diffuse Alveolar Damage

Controls

Sepsis

Sepsis induced by CASP

10 rats each, lung protective ventilation

P/F

Sepsis induced by CASP
10 rats each, lung protective ventilation

P/F

390.000
365.625
341.250
316.875
292.500

BL 1hr 4hr

CV control
CV sepsis
PS control
PS sepsis

Sepsis induced by CASP
10 rats each, lung protective ventilation

Sepsis induced by CASP
10 rats each, lung protective ventilation

Sepsis induced by CASP
10 rats each, lung protective ventilation

Sepsis induced by CASP

10 rats each, lung protective ventilation

Effects on microcirculation

Leukocyte adhesion V1

Figure 1a: Leukocyte adhesion [n/30s] in submucosal collecting (V1) venules
* p<0.05 vs. control

Effects on microcirculation

Leukocyte adhesion V1

Figure 1a: Leukocyte adhesion [n/30s] in submucosal collecting (V1) venules
* p < 0.05 vs. control

Effects on microcirculation

Leukocyte adhesion V1

Figure 1a: Leukocyte adhesion [n/30s] in submucosal collecting (V1) venules
* p<0.05 vs. control

FCD: Musc.long.function.

Figure 2a: Functional capillary density
* p<0.05 vs. control ; # p<0.05 vs. PSV
Effects on microcirculation

Leukocyte adhesion V1

FCD: Musc.long.function.

Figure 1a: Leukocyte adhesion [n/30s] in submucosal collecting (V1) venules
* p< 0,05 vs. control

Figure 2a: Functional capillary density
* p< 0,05 vs. control ; # p< 0,05 vs. PSV

Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury.

• 30 patients with chest trauma with or at risk for ALI/ARDS
• pressure control (PCV) vs. airway pressure release ventilation (APRV)
• 72h Sedation in PCV
• Outcomes: Oxygenation, hemodynamics, progression to

Putensen et al. AJRCCM 2001; 164:43-9
Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury.

- 30 patients with chest trauma with or at risk for ALI/ARDS
- Pressure control (PCV) vs. airway pressure release ventilation (APRV)
- 72h Sedation in PCV
- Outcomes: Oxygenation, hemodynamics, progression to

Putensen et al. AJRCCM 2001; 164:43-9
Preserved spontaneous breathing in early ARDS: Effects on oxygenation

![Graph showing changes in PaO2/FiO2 over time with APRV and PCV]
Preserved spontaneous breathing in early ARDS: Effects on cardiac output

Putensen et al. AJRCCM 2001; 164:43-9
APRV vs. PCV: Outcomes

<table>
<thead>
<tr>
<th></th>
<th>APRV Group</th>
<th>PCV Group</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients, n (%)</td>
<td>15 (100)</td>
<td>15 (100)</td>
<td>–</td>
</tr>
<tr>
<td>Survivors, n (%)</td>
<td>12 (80)</td>
<td>11 (74)</td>
<td>ns</td>
</tr>
<tr>
<td>ARDS, n (%)</td>
<td>3 (20)</td>
<td>11 (74)</td>
<td>0.015</td>
</tr>
<tr>
<td>ALI non ARDS, n (%)</td>
<td>8 (53)</td>
<td>4 (27)</td>
<td>0.019</td>
</tr>
<tr>
<td>Extrapulmonary organ failure, n (%)†</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8 (53)</td>
<td>10 (67)</td>
<td>ns</td>
</tr>
<tr>
<td>2</td>
<td>6 (38)</td>
<td>7 (47)</td>
<td>ns</td>
</tr>
<tr>
<td>≥ 3</td>
<td>1 (9)</td>
<td>0 (0)</td>
<td>ns</td>
</tr>
<tr>
<td>Sepsis, n (%)</td>
<td>9 (75)</td>
<td>10 (30)</td>
<td>ns</td>
</tr>
<tr>
<td>Length of ventilatory support, d</td>
<td>15 ± 2</td>
<td>21 ± 2</td>
<td>0.032</td>
</tr>
<tr>
<td>Length of intubation, d</td>
<td>18 ± 2</td>
<td>25 ± 2</td>
<td>0.011</td>
</tr>
<tr>
<td>Length of ICU stay, d</td>
<td>23 ± 2</td>
<td>30 ± 2</td>
<td>0.032</td>
</tr>
</tbody>
</table>
APRV vs. PCV: Outcomes

<table>
<thead>
<tr>
<th>Outcome</th>
<th>APRV Group</th>
<th>PCV Group</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients, n (%)</td>
<td>15 (100)</td>
<td>15 (100)</td>
<td>–</td>
</tr>
<tr>
<td>Survivors, n (%)</td>
<td>12 (80)</td>
<td>11 (74)</td>
<td>ns</td>
</tr>
<tr>
<td>ARDS, n (%)</td>
<td>3 (20)</td>
<td>11 (74)</td>
<td>0.015</td>
</tr>
<tr>
<td>ALI non ARDS, n (%)</td>
<td>8 (53)</td>
<td>4 (27)</td>
<td>0.019</td>
</tr>
<tr>
<td>Extrapulmonary organ failure, n (%)†</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8 (53)</td>
<td>10 (67)</td>
<td>ns</td>
</tr>
<tr>
<td>2</td>
<td>6 (38)</td>
<td>7 (47)</td>
<td>ns</td>
</tr>
<tr>
<td>≥ 3</td>
<td>1 (9)</td>
<td>0 (0)</td>
<td>ns</td>
</tr>
<tr>
<td>Sepsis, n (%)</td>
<td>9 (75)</td>
<td>10 (30)</td>
<td>ns</td>
</tr>
<tr>
<td>Length of ventilatory support, d</td>
<td>15 ± 2</td>
<td>21 ± 2</td>
<td>0.032</td>
</tr>
<tr>
<td>Length of intubation, d</td>
<td>18 ± 2</td>
<td>25 ± 2</td>
<td>0.011</td>
</tr>
<tr>
<td>Length of ICU stay, d</td>
<td>23 ± 2</td>
<td>30 ± 2</td>
<td>0.032</td>
</tr>
</tbody>
</table>
Conclusion I
Conclusion I

• Short-term lung protective ventilation during surgery may have an influence on outcome
 • PROVHILO study (900 pts)
Conclusion I

- Short-term lung protective ventilation during surgery may have an influence on outcome
 - PROVHILO study (900 pts)
- Low tidal volume ventilation with PEEP on admission to ICU reduces the risk of developing ALI
Conclusion II

• It may be that ALI/ARDS is largely a ‘man-made’ syndrome, developing as a consequence of the aggressive treatment applied to acutely ill patients.

Villar J & Slutsky A. Is ARDS an iatrogenic disease? Crit Care 2010; 14:120
Conclusion II

- It may be that ALI/ARDS is largely a ‘man-made’ syndrome, developing as a consequence of the aggressive treatment applied to acutely ill patients.

- If so, ... ALI/ARDS is no longer a syndrome that must be treated, but is a syndrome that should be prevented.

Villar J & Slutsky A. Is ARDS an iatrogenic disease? Crit Care 2010; 14:120
Thank you!

Department of Anesthesia

Dalhousie University
Inspiring Minds
Faculty of Medicine