Neuromuscular Blockade in ARDS

Maureen O. Meade, MD, FRCPC
Critical care consultant, Hamilton Health Sciences
Professor of Medicine, McMaster University
www.oscillatetrial.com
Disclosures

None
Neuromuscular Blockers in Early Acute Respiratory Distress Syndrome

Laurent Papazian, M.D., Ph.D., Jean-Marie Forel, M.D., Arnaud Gacouin, M.D., Christine Penot-Ragon, Pharm.D., Gilles Perrin, M.D., Anderson Loundou, Ph.D., Samir Jaber, M.D., Ph.D., Jean-Michel Arnal, M.D., Didier Perez, M.D., Jean-Marie Seghboyan, M.D., Jean-Michel Constantin, M.D., Ph.D., Pierre Courant, M.D., Jean-Yves Lefrant, M.D., Ph.D., Claude Guérin, M.D., Ph.D., Gwenaël Prat, M.D., Sophie Morange, M.D., and Antoine Roch, M.D., Ph.D., for the ACURASYS Study Investigators*
Possible Mechanisms

Lung mechanics
- Better synchrony
- More uniform recruitment
- Improved compliance
- Better gas exchange
- Better systemic oxygenation

Lung inflammation
- Better control of insp V, P
- Less volutrauma
- Better control of exp V, P
- Less atelectrauma
- Less lung inflammation
- Less systemic inflammation
Trade-offs

Potential benefits
- Synchrony
- Oxygenation
- Reduced VILI
- Survival

Potential harms
- Prolonged weakness
- Hemodynamics
- Cost
Paralysis and Prolonged Weakness

Overview
• case reports, case series, retrospective studies
• usually related to asthma, confounded by steroid use
• lacked objective, reliable measures
• lacked systematic screening

Findings
• risk of prolonged weakness was related to dose, duration, and coexistent renal or hepatic dysfunction
• role of a class effect controversial
 – Aminosteroids (pancuronium, vecuronium, rocuronium) vs benzylisoquinolines (cisatricurium)
Prospective, controlled study (N = 73)

All received electrophysiologic testing
- Sensory and motor nerve conduction
- Blinded assessments

14% received NMBA; 15% received steroids

50% developed critical illness polyneuropathy

18/73 survived; 8 had polyneuropathy (44%)

OR 16.3 (1.3 – 199), p 0.0008
- regardless of NMBA class
- steroids not associated with weakness (NS)
ICU physician survey 2002

• Agents (across indications)
 – pancuronium, rocuronium, vecuronium
 – ...cisatricurium

• Monitoring
 – 61% physical exam
 – 84% PNS

• Daily interruption
 – 64% discontinued paralysis on a daily basis

• Protocols
 – 22% used a local protocol for neuromuscular blockade
Actual Use of NMBA

- **ALVEOLI (P/F ≤ 300)**... 25% ever, median 2 days
- **EXPRESS (P/F ≤ 300)**... 63% ever, median 3 days
- **LOVS (P/F ≤ 250)**... 44% ever, median 2.5 days

- **OSCILLATE**
 - (P/F ≤ 200)... 32.8% at baseline

- Randomized trials of low tidal volume ventilation
 - Burns, PLoS 2011
 - Compared to patients receiving traditional ventilation, significantly more patients managed with low Vt received paralysis
 - RR 1.37; 95% CI 1.04-1.82; p=0.03
ACURASYS

Design... multicentre RCT

Patients... 340 patients with ARDS
- early (< 48h)
- severe (P/F < 150)
- PEEP ≥ 5 cm H₂O; Vt 6-8 ml/kg

Paralysis... cisatricurium infusion x 48 h

Control... placebo infusion x 48 h

Both groups... - deep sedation
- lung protective volume-AC
- 20 mg cisatricurium injection if Pplat > 32 cm H₂O
- no peripheral nerve stimulation

Analysis... adjusted RR hospital mortality at 90 days
(P/F, SAPS II, Pplat)
Mortality at 90 Days

Hazard Ratio 0.68 (0.48 – 0.98) p = 0.04
Meta-analysis: ICU Mortality

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Cisatracurium</th>
<th>Placebo</th>
<th>Risk Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td>Weight</td>
</tr>
<tr>
<td>Gainnier 2004</td>
<td>13</td>
<td>28</td>
<td>27.2%</td>
</tr>
<tr>
<td>Forel 2006</td>
<td>5</td>
<td>18</td>
<td>8.0%</td>
</tr>
<tr>
<td>Papazian 2010</td>
<td>52</td>
<td>177</td>
<td>64.8%</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>223</td>
<td>208</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Total events 70 93

Heterogeneity: \(\tau^2 = 0.00; \chi^2 = 0.95, \text{df} = 2 (P = 0.62); I^2 = 0\%

Test for overall effect: \(Z = 2.88 (P = 0.004) \)

With permission, Dr. Waleed Alhazzani
<table>
<thead>
<tr>
<th>Outcome</th>
<th>Cisatracurium (N=177)</th>
<th>Placebo (N=162)</th>
<th>Relative Risk with Cisatracurium (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death — no. (% [95% CI])</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At 28 days</td>
<td>42 (23.7 [18.1–30.5])</td>
<td>54 (33.3 [26.5–40.9])</td>
<td>0.71 (0.51–1.00)</td>
<td>0.05</td>
</tr>
<tr>
<td>In the ICU</td>
<td>52 (29.4 [23.2–36.5])</td>
<td>63 (38.9 [31.7–46.6])</td>
<td>0.76 (0.56–1.02)</td>
<td>0.06</td>
</tr>
<tr>
<td>In the hospital</td>
<td>57 (32.2 [25.8–39.4])</td>
<td>67 (41.4 [34.1–49.1])</td>
<td>0.78 (0.59–1.03)</td>
<td>0.08</td>
</tr>
<tr>
<td>No. of ventilator-free days†</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>From day 1 to day 28</td>
<td>10.6±9.7</td>
<td>8.5±9.4</td>
<td></td>
<td>0.04</td>
</tr>
<tr>
<td>From day 1 to day 90</td>
<td>53.1±35.8</td>
<td>44.6±37.5</td>
<td></td>
<td>0.03</td>
</tr>
<tr>
<td>No. of days without organ failure, from day 1 to day 28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No cardiovascular failure</td>
<td>18.3±9.4</td>
<td>16.6±10.4</td>
<td></td>
<td>0.12</td>
</tr>
<tr>
<td>No coagulation abnormalities</td>
<td>22.6±8.9</td>
<td>20.5±9.9</td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>No hepatic failure</td>
<td>21.3±9.6</td>
<td>19.1±10.6</td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>No renal failure</td>
<td>20.5±10.1</td>
<td>18.1±11.6</td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>None of the four</td>
<td>15.8±9.9</td>
<td>12.2±11.1</td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>No. of days outside the ICU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>From day 1 to day 28</td>
<td>6.9±8.2</td>
<td>5.7±7.8</td>
<td></td>
<td>0.16</td>
</tr>
<tr>
<td>From day 1 to day 90</td>
<td>47.7±33.5</td>
<td>39.5±35.6</td>
<td></td>
<td>0.03</td>
</tr>
<tr>
<td>Hospital survivors admitted to other health care facilities from day 1 to day 90 — % (95% CI)</td>
<td>22.3 (15.8–30.5)</td>
<td>18.8 (12.2–27.8)</td>
<td>0.52</td>
<td></td>
</tr>
<tr>
<td>Barotrauma — no. (% [95% CI])‡</td>
<td>9 (5.1 [2.7–9.4])</td>
<td>19 (11.7 [7.6–17.6])</td>
<td>0.43 (0.20–0.93)</td>
<td>0.03</td>
</tr>
<tr>
<td>Pneumothorax — no. (% [95% CI])‡</td>
<td>7 (4.0 [2.0–8.0])</td>
<td>19 (11.7 [7.6–17.6])</td>
<td>0.34 (0.15–0.78)</td>
<td>0.01</td>
</tr>
<tr>
<td>MRC score — median (IQR)§</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At day 28</td>
<td>55 (46–60)</td>
<td>55 (39–60)</td>
<td></td>
<td>1.07 (0.80–1.45)</td>
</tr>
<tr>
<td>At ICU discharge</td>
<td>55 (43–60)</td>
<td>55 (44–60)</td>
<td></td>
<td>0.92 (0.71–1.19)</td>
</tr>
<tr>
<td>Patients without ICU-acquired paresis‡</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>By day 28 — no./total no. (% [95% CI])</td>
<td>68/96 (70.8 [61.1–79.0])</td>
<td>52/77 (67.5 [56.5–77.0])</td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td>By ICU discharge — no./total no. (% [95% CI])</td>
<td>72/112 (64.3 [55.1–72.6])</td>
<td>61/89 (68.5 [58.3–77.3])</td>
<td>0.51</td>
<td></td>
</tr>
</tbody>
</table>
Context

Context of current care
Related trials
Criticisms of the trial
Incomplete Blinding

- Adequate blinding of caregivers implausible for some patients, particularly those with profound respiratory acidosis and air hunger
- In general, unblinded studies overestimate treatment effects

VALID CRITICISM; NOT A FATAL FLAW.
Lack of Monitoring

1. Depth of blockade
 - No peripheral nerve stimulation
 - Monitored P_{plat}

2. Ventilator dyssynchrony in the placebo group
 - Could inadequate monitoring and management of dyssynchrony in the placebo group predispose to worse outcomes?

VALID CRITICISM; NOT A FATAL FLAW.
Suitability of MRC Scale

• Assessed strength in 3 muscles groups in each arm and leg, at 28 days or ICU discharge
• Recovery period may be too brief to detect differences, particularly if patients slow to awaken
• 10% of live patients did not contribute data
• Future approach
 – More protracted MRC assessments
 – Electrophysiologic assessments

VALID CRITICISM; NOT A FATAL FLAW.
many clinicians are already paralyzing in severe ARDS
observational studies have rightly tempered our enthusiasm
an imperfect but methodologically strong RCT suggests a survival benefit, at no apparent increased risk of prolonged weakness
short-term neuromuscular blockade with cisatricurium for patients with severe ARDS (eg, PaO₂/FiO₂ ≤ 120) is probably safe and likely beneficial
further study is required to replicate these findings
Ideal NMB Agent

- rapid onset of paralysis
- titratable effect
- rapid offset, to allow neurologic assessments
- no adverse physiologic effects
- elimination independent of hepatic or renal function
- inactive metabolites
- modest cost
<table>
<thead>
<tr>
<th>agent</th>
<th>onset (min)</th>
<th>duration (min)</th>
<th>renal – hepatic</th>
<th>active metabolit</th>
<th>adverse effects</th>
<th>cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>pancuronium</td>
<td>3-6</td>
<td>90</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓</td>
<td>tachycardia</td>
<td>+</td>
</tr>
<tr>
<td>vecuronium</td>
<td>2-3</td>
<td>30-75</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
<td></td>
<td>++</td>
</tr>
<tr>
<td>rocuronium</td>
<td>1.5-2</td>
<td>30-60</td>
<td>✓ ✓</td>
<td>✓</td>
<td>(tachycardia)</td>
<td>++</td>
</tr>
<tr>
<td>atricurium</td>
<td>2-3</td>
<td>30-60</td>
<td>✓ ✓ ✓</td>
<td></td>
<td>(CNS excitation) (hypotension)</td>
<td>+++</td>
</tr>
<tr>
<td>cisatricurium</td>
<td>2-3</td>
<td>45-60</td>
<td></td>
<td></td>
<td></td>
<td>++++</td>
</tr>
</tbody>
</table>
Supportive Care

- *sedation* and analgesia prior to paralysis
- supervise closely - ventilator *disconnects* can be fatal
- *suction* based on amount of secretions – (no cough reflex)
- *elevate* head of the bed to reduce aspiration, and VAP
- artificial *tears*, tape eyelids to prevent corneal ulceration
- frequent *turning* and dry bedding to prevent skin breakdown

- *enteral feeding* is not contraindicated!
Increased tidal volume secondary to increased respiratory drive due to:

- Arterial PO₂
- Lung reflectors
- Anxiety
- Permissive hypercapnia

"atelectrauma"

Dysfunction or organ failure due to:

- Arterial PO₂
- Blood flow
- ↑ Mediators

Te lungs

After paralysis

Respiratory cycle

- Patient: No pressure signal, No dysynchrony
- Pressure generated
- Ventilator: Lower tidal volume, Lower capillary permeability

Less ventilator-induced lung injury

- Less barotrauma
- Less injury due to ↓ pulmonary blood flow
- ↓ Venous PO₂
- Direct anti-inflammatory effect of NMBAs

Less inflammation

Mediators

O₂ molecules

Less translocated mediators from alveoli to bloodstream

Vital organs

Muscles