ARDS – Endotypes and Phenotypes

Jason D. Christie, MD, MS

Associate Professor of Medicine
Associate Professor of Epidemiology
University of Pennsylvania School of Medicine
Disclosures

No relevant commercial interests

My work is funded by NIH R01HL087115, R01HL081619, R01HL096845, R01HL114626, R01HL113252, K24HL115354, and MaPGen: U01-HL108636

I have also received Institutional Grant Funding from GSK to study ARDS and critical illness.
Outline

• Definitions
• “ARDS” Endotypes
 – Clinical Pattern
 – Molecules
Definitions

• “Phenotype”
 – the composite of an organism's observable characteristics or traits
 – Genotype-phenotype distinction
 • 1911 Wilhelm Johannsen
 • Phenotype is the expression of the genotype
Definitions

• “Phenotype”
 – the composite of an organism's observable characteristics or traits
 – Genotype-phenotype distinction
 • 1911 Wilhelm Johannsen
 • Phenotype is the expression of the genotype
Definitions

• “Endotype”
 – A subtype of a condition defined by a distinct functional/pathobiological mechanism
 – Inherent in the process of syndrome evolution
 • MI → NSTEMI
 – A “functional paradigm”
 • Extrinsic asthma → IgE
 • Crohn’s → IL23R
Paradigm

- Paradigm
 - “collection of beliefs shared by scientists, a set of agreements about how problems are to be understood”
 - Kuhn: The Structure of Scientific Revolutions
 - Utility

- Can we shift the ARDS phenotype paradigm according to biology?
Why I care about ARDS phenotype

• TRANSLATIONAL GOALS

1) Understand genetic, genomic and protein risk factors for ARDS in human studies
2) Predict ARDS and identify mechanism-defined subgroups of ARDS
3) Prevent ARDS through targeted therapies and pharmacogenomic studies (PETAL)
Why I care about ARDS phenotype

• TRANSLATIONAL GOALS

1) Understand genetic, genomic and protein risk factors for ARDS in human studies
2) Predict ARDS and identify mechanism-defined subgroups of ARDS
3) Prevent ARDS through targeted therapies and pharmacogenomic studies (PETAL)

Predict, treat, and prevent what, exactly?
ARDS Definition

• 1994 Consensus Definition (Bernard)
 – PaO2/FiO2 <300
 – Chest x-ray c/w bilateral pulmonary edema
 – Absence of congestive heart failure
 – Used in ARMA

• 2011 Berlin Definition
 – Similar criteria, different semantics
Predictive Validity of Berlin Definition

<table>
<thead>
<tr>
<th>Table 5. Predictive Validity of ARDS Definitions in the Physiologic Database</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modified AECC Definition^a</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>No. (%) [95% CI] of patients</td>
</tr>
<tr>
<td>Mortality, No. (%) [95% CI]^b</td>
</tr>
<tr>
<td>13 (20) [11-31]</td>
</tr>
<tr>
<td>Ventilator-free days Median (IQR)</td>
</tr>
<tr>
<td>8.5 (0-23.5)</td>
</tr>
<tr>
<td>Missing, No.</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>Duration of mechanical ventilation in survivors, median (IQR), d</td>
</tr>
<tr>
<td>6.0 (3.3-20.8)</td>
</tr>
<tr>
<td>Lung weight, mg^c</td>
</tr>
<tr>
<td>Mean (SD)</td>
</tr>
<tr>
<td>Missing, No.</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>Shunt, mean (SD), %^c,d</td>
</tr>
<tr>
<td>21 (21)</td>
</tr>
</tbody>
</table>

Rubenfeld, JAMA 2012
Specificity of the *STAT4* Genetic Association for Severe Disease Manifestations of Systemic Lupus Erythematosus

Kimberly E. Taylor¹, Elaine F. Remmers², Annette T. Lee³, Ward A. Ortmann⁴, Robert M. Plenge⁵, Chao Tian⁷, Sharon A. Chung¹, Joanne Nititham¹, Geoffrey Hom⁴, Amy H. Kao⁸, F. Yesim Demirci⁸, M. Ilyas Kamboh⁸, Michelle Petri⁹, Susan Manzi⁸, Daniel L. Kastner², Michael F. Seldin⁷, Peter K. Gregersen³, Timothy W. Behrens⁴, Lindsey A. Criswell¹

Table 5. rs7574865 association with phenotype status of cases in homogeneous analyses**

<table>
<thead>
<tr>
<th>Phenotypes</th>
<th>Homogeneous OR*</th>
<th>Homogeneous p-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe nephritis†</td>
<td>1.79 (1.20–2.67)</td>
<td>0.0039</td>
</tr>
<tr>
<td>Renal disorder</td>
<td>1.48 (1.16–1.88)</td>
<td>0.0016</td>
</tr>
<tr>
<td>First PC†>0</td>
<td>1.42 (1.12–1.79)</td>
<td>0.0033</td>
</tr>
<tr>
<td>Anti-dsDNA autoantibodies</td>
<td>1.40 (1.12–1.76)</td>
<td>0.0037</td>
</tr>
<tr>
<td>Diagnosis <30 years</td>
<td>1.35 (1.07–1.70)</td>
<td>0.012</td>
</tr>
<tr>
<td>Immunologic disorder</td>
<td>1.19 (0.94–1.52)</td>
<td>0.15</td>
</tr>
<tr>
<td>Oral ulcers</td>
<td>0.62 (0.49–0.79)</td>
<td>0.00010</td>
</tr>
</tbody>
</table>
Outline

• Definitions

• “ARDS” Endotypes
 – Clinical Pattern
 – Molecules
Is ARDS more than one syndrome?

• Are there patterns of ARDS following injury?
ARDS patterns based on timing of onset

• Severe Trauma Cohort
• Latent class models
 – timing and certainty of ARDS
 – 2 readers adjudication, all P/F
 • “Equivocal” for missing data, quality, disagreement
• Tested for discrimination of clinical variables
• Divergence of biological markers of injury
 – Lorraine Ware – VALID study

Reilly, AATS 2014
LATENT CLASS 1 – Early Onset (n=98, 52%)

- **Definite ARDS**
- **Equivocal**
- **Not ARDS**

Estimated Probability

Study Day

- Day 1
- Day 2
- Day 3
- Day 4
- Day 5
LATENT CLASS 2 – Late Onset (n=76, 40%)
LATENT CLASS 3 – Latest Onset (n=15, 8%)

- **Definite ARDS**
- **Equivocal**
- **Not ARDS**

Estimated Probability vs. Study Day

- Study Day 1: Definite ARDS - 0, Not ARDS - 0, Equivocal - 0.2
- Study Day 2: Definite ARDS - 0.5, Not ARDS - 0, Equivocal - 0.7
- Study Day 3: Definite ARDS - 1, Not ARDS - 0, Equivocal - 0
- Study Day 4: Definite ARDS - 0, Not ARDS - 0, Equivocal - 0.2
- Study Day 5: Definite ARDS - 0, Not ARDS - 0, Equivocal - 0.5
<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Class 1 (n=98) Early Onset</th>
<th>Class 2 (n=76) Late Onset</th>
<th>Class 3 (n=15) Latest Onset</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yrs)</td>
<td>38 (22-50)</td>
<td>34 (23-48)</td>
<td>38 (21-53)</td>
<td>0.986</td>
</tr>
<tr>
<td>Male</td>
<td>79%</td>
<td>76%</td>
<td>80%</td>
<td>0.926</td>
</tr>
<tr>
<td>Race: African American</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caucasian</td>
<td>55%</td>
<td>47%</td>
<td>47%</td>
<td>0.567</td>
</tr>
<tr>
<td>Caucasian</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>2%</td>
<td>2%</td>
<td>7%</td>
<td></td>
</tr>
<tr>
<td>Injury Severity Score</td>
<td>25 (20-32)</td>
<td>25 (19-29)</td>
<td>21 (18-29)</td>
<td>0.419</td>
</tr>
<tr>
<td>AIS Thorax (0-5)</td>
<td>4 (3-4)</td>
<td>3 (0-4)</td>
<td>2 (0-3)</td>
<td><0.001*</td>
</tr>
<tr>
<td>APACHE III w/o ABG</td>
<td>59 (50-71)</td>
<td>58 (47-73)</td>
<td>58 (48-74)</td>
<td>0.821</td>
</tr>
<tr>
<td>Blunt Injury</td>
<td>74%</td>
<td>74%</td>
<td>67%</td>
<td>0.846</td>
</tr>
<tr>
<td>Pulmonary Contusion</td>
<td>40%</td>
<td>32%</td>
<td>20%</td>
<td>0.276</td>
</tr>
<tr>
<td>Alcohol Use</td>
<td>16%</td>
<td>15%</td>
<td>21%</td>
<td>0.846</td>
</tr>
<tr>
<td>Lowest SBP – ED or OR, mm Hg</td>
<td>78 (68-98)</td>
<td>90 (80-104)</td>
<td>90 (80-102)</td>
<td>0.003*</td>
</tr>
<tr>
<td>Initial Creatinine, mg/dL</td>
<td>1.1 (0.9-1.3)</td>
<td>1.1 (0.9-1.3)</td>
<td>1.0 (0.9-1.3)</td>
<td>0.756</td>
</tr>
<tr>
<td>Acute Kidney Injury</td>
<td>36%</td>
<td>42%</td>
<td>20%</td>
<td>0.255</td>
</tr>
<tr>
<td>IV Fluids – ED or OR, Liters</td>
<td>5.0 (2.3-8.0)</td>
<td>3.5 (2.0-7.5)</td>
<td>5.9 (3.0-8.1)</td>
<td>0.384</td>
</tr>
<tr>
<td>PRBC – ED or OR, units*</td>
<td>4 (0-9)</td>
<td>1 (0-6)</td>
<td>1 (0-6)</td>
<td>0.030*</td>
</tr>
<tr>
<td>PRBC transfusion*</td>
<td>73%</td>
<td>54%</td>
<td>57%</td>
<td>0.049*</td>
</tr>
<tr>
<td>Hospital Mortality</td>
<td>24%</td>
<td>25%</td>
<td>20%</td>
<td>0.966</td>
</tr>
</tbody>
</table>
Derivation Trauma Cohort: n=636

ARDS Case n=189 (30%)
Not ARDS n=447 (70%)

Early Onset <48 hrs n=108 (57%)
Late Onset >48 hrs n=81 (43%)

Validation Trauma Cohort: n=609

ARDS Case N=205 (34%)
Not ARDS n=404 (66%)

Early Onset <48 hrs n=115 (56%)
Late Onset >48 hrs n=90 (44%)

PENN

VANDY
Derivation Trauma Cohort: n=636

ARDS Case n=189 (30%)
Not ARDS n=447 (70%)

Early Onset <48 hrs n=108 (57%)
Late Onset >48 hrs n=81 (43%)

Validation Trauma Cohort: n=609

ARDS Case N=205 (34%)
Not ARDS n=404 (66%)

Early Onset <48 hrs n=115 (56%)
Late Onset >48 hrs n=90 (44%)

PENN

VANDY

AIS thorax p<0.001
Shock p=0.006
Biomarker Validation - VALID

<table>
<thead>
<tr>
<th>Biomarker</th>
<th>Class 1 (Early Onset)</th>
<th>Class 2 (Late Onset)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N=46 (55%)</td>
<td>N=38 (45%)</td>
<td></td>
</tr>
<tr>
<td>IL-8 (pg/ml)</td>
<td>15.6 (15.6-71.2)</td>
<td>15.6 (15.6-65.35)</td>
<td>0.756</td>
</tr>
<tr>
<td>VWF (% control)</td>
<td>263 (192-355)</td>
<td>243 (155-353)</td>
<td>0.199</td>
</tr>
<tr>
<td>SP-D (ng/ml)</td>
<td>55 (35-82)</td>
<td>59 (43-90)</td>
<td>0.689</td>
</tr>
<tr>
<td>PAI-1 (ng/ml)</td>
<td>139 (40-266)</td>
<td>78 (40-214)</td>
<td>0.445</td>
</tr>
<tr>
<td>CC16 (ng/ml)</td>
<td>5.7 (3.5-9.0)</td>
<td>5.7 (4.0-9.8)</td>
<td>0.608</td>
</tr>
<tr>
<td>sRAGE (pg/ml)</td>
<td>1,994 (949-3,340)</td>
<td>1,298 (834-1,982)</td>
<td>0.043*</td>
</tr>
<tr>
<td>Ang2 (pg/ml)</td>
<td>6,212 (4,300-8,581)</td>
<td>4,667 (3,193-5,942)</td>
<td>0.014*</td>
</tr>
<tr>
<td>BNP (ng/ml)</td>
<td>0.36 (0.30-0.56)</td>
<td>0.33 (0.27-0.54)</td>
<td>0.506</td>
</tr>
<tr>
<td>PCP III (ng/ml)</td>
<td>3.5 (2.6-4.9)</td>
<td>3.5 (2.7-4.3)</td>
<td>0.683</td>
</tr>
<tr>
<td>IL-10 (pg/ml)</td>
<td>22 (12-102)</td>
<td>27 (11-89)</td>
<td>0.986</td>
</tr>
<tr>
<td>TNF-α (pg/ml)</td>
<td>1.77 (0.69-4.79)</td>
<td>0.8 (0.61-6.12)</td>
<td>0.240</td>
</tr>
</tbody>
</table>

Reilly, AATS 2014
Timing of Injury Endotype

• Early ARDS is associated with shock, and PRBC resuscitation

• Higher levels of Angpt-2 (sRAGE)
 – “Endothelial Injury” phenotype?
 – Targeted therapies - timing
Genetic Endotypes?

• Hypothesis
 – Evolutionary pressures select on mechanisms important to risk/outcome of ICU syndromes
 • Bleeding/injury
 • Plagues/endemic infections
 • Dehydration
 • Starvation
 • Temperature extremes
Using Convergent GWAS to guide biology

• ABO Gene
 – Evolutionary Selection
 • Malaria, cholera, E. Coli
 – GWAS ABO Gene associations
 • MI - Group A higher risk
 • VTE- Group A higher risk
 • vWF, ICAM-1 Level, E & P-selectins
 – Pathways and molecules implicated in ALI
ABO Gene

- Encodes a family of glycotransferases that catalyze antigen modifications on various glycans and glycoproteins.

- Determine ABO blood type
 - Proteins
 - Platelets, ECs

- Associated with various infections/vascular diseases
ABO Blood Types and ARDS

• Hypotheses:

 - “A” Transferase Blood Type A
 - Absent Transferase Blood Type O
 - ARDS Risk

• Study Populations: Penn Trauma and Sepsis (MESSI) Cohorts
Unadjusted ARDS Risk in Trauma

Unadjusted ARDS Risk by ABO Blood Type:

- A: 37% (n=138)
- AB: 26% (n=19)
- B: 15% (n=34)
- O: 26% (n=144)

Statistical significance: p=0.039

Unadjusted ARDS Risk in Sepsis

<table>
<thead>
<tr>
<th>Blood Type</th>
<th>% ARDS</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>31%</td>
<td>213</td>
</tr>
<tr>
<td>AB</td>
<td>28%</td>
<td>29</td>
</tr>
<tr>
<td>B</td>
<td>19%</td>
<td>63</td>
</tr>
<tr>
<td>O</td>
<td>20%</td>
<td>239</td>
</tr>
</tbody>
</table>

\[p = 0.049 \]

Multivariable Adjusted ARDS Risk

<table>
<thead>
<tr>
<th>Population</th>
<th>% ARDS Type A</th>
<th>% ARDS Non-A</th>
<th>Unadjusted OR (95% CI)</th>
<th>P</th>
<th>Adjusted* OR (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trauma* (n=370)</td>
<td>37%</td>
<td>24%</td>
<td>1.87</td>
<td>0.010</td>
<td>1.88</td>
<td>0.014</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1.16, 3.01)</td>
<td></td>
<td>(1.14, 3.13)</td>
<td></td>
</tr>
<tr>
<td>Sepsis # (n=544)</td>
<td>31%</td>
<td>21%</td>
<td>1.70</td>
<td>0.009</td>
<td>1.67</td>
<td>0.021</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1.14, 2.52)</td>
<td></td>
<td>(1.08, 2.59)</td>
<td></td>
</tr>
</tbody>
</table>

*Adjusted for age, sex, ISS, mechanism of injury, history of diabetes, and units of red blood cells

#Adjusted for age, sex, APACHE III, history of diabetes, units of red blood cells, and pulmonary vs extra-pulmonary infection

Trauma - AKI

Adjusted AKI Risk

- O (n=95)
- A (n=94)
- B (n=28)
- AB (n=12)

p=0.01

ABO Blood Type
Sepsis - AKI

Adjusted AKI Risk

p=0.02

ABO Blood Type

O (n=190)
A (n=188)
B (n=40)
AB (n=19)
Blood Group A Endotype

• May be shared across multiple phenotypes
 – VTE
 – MI
 – ARDS
 – AKI
Blood Group A Endotype

- vWF, ICAM-1 and other mediators may be modified by A transferase leading to ARDS
 - Assess causal pathway in mediation analyses
 - Ongoing studies to identify novel protein modifications in MAPGen

- Platelet sheddome – enriched in glycoproteins
- TSP-1 most abundant glycoprotein in sheddome
 - N-linked sialylation modifications
 - A antigen
Obesity Endotype in AKI

Shashaty, CCM, 2014
Other Potential Endotypes

• **IL1RA** – Inflammasome activation
 • Meyer, AJRCCM 2013, 2014

• **mtDNA - DAMP**
 • Nakahira, Choi, PloS Med 2013

• **ANGTP2** – vascular injury/inflammation
 • Meyer, AJRCCM 2011

• **PEEP responsive** -
 • Calfee, Lancet Resp medicine 2014

• **Ongoing Studies**
 – Galaxy ALI, iSPAAR
Summary

• “ARDS” is a paradigm, like AKI
 – Useful for some clinical trials

• Biology-driven endotypes may lead to precision therapies
 – Predisposing factor
 – Timing of onset
 – Blood group
 – Inflammatory markers, shock
 – Genotype
Acknowledgements

• Paul Lanken, MD
• Barry Fuchs, MD
• Sandra Kaplan, MSN
• Nuala Meyer MD
• John Reilly, MD
• Rupal Shah, MD
• Josh Diamond, MD
• Rui Feng, PhD
• Hakon Hakonarson, MD, PhD
• Scarlett Bellamy, ScD
• Bob Gallop, PhD
• Russell Localio, PhD

• TASC Investigators
• LTOG Investigators
 – Lorraine Ware
 – David Lederer
• Melanie Doran, BS
• Carly Dericco, BS
• Richard Aplenc MD, MSCE

• Funded by NIH:
 – HL079063 (Fisher - JC)
 – HL042423 (JC)
 – HL087115 (JC)
 – HL081619 (JC)
 – HL096845 (JC)
 – HL115354 (JC)
 – HL114626 (LC)